Dyadic Decision Trees

نویسندگان

  • Pin-Yu Chen
  • Gopal Nataraj
چکیده

These notes introduce a new kind of classifier called a dyadic decision tree (DDT). We also introduce a discrimination rule for learning a DDT that achieves the optimal rate of convergence, ER(ĥn) − R∗ = O(n−1/d), for the box-counting class, which was defined in the previous set of notes. This improves on the rate of ER(ĥn)−R = O(n−1/(d+2)) for the histogram sieve estimator from the previous notes. Dyadic decision trees are based on recursively splitting the input space at the midpoint along some dimension. This is in contrast to conventional decision trees that allow the splits to occur at any point. Yet DDTs can still approximate complex decision boundaries, and the restriction to dyadic splits makes it possible to globally optimize a complexity penalized empirical risk criterion, in contrast to mainstream methods for decision tree learning that first perform greedy growing followed by pruning. These notes will not discuss implementation of the discrimination rules, but the interested reader can find algorithms and computational considerations discussed in [1, 2, 3].

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multivariate Dyadic Regression Trees for Sparse Learning Problems

We propose a new nonparametric learning method based on multivariate dyadic regression trees (MDRTs). Unlike traditional dyadic decision trees (DDTs) or classification and regression trees (CARTs), MDRTs are constructed using penalized empirical risk minimization with a novel sparsity-inducing penalty. Theoretically, we show that MDRTs can simultaneously adapt to the unknown sparsity and smooth...

متن کامل

Technical Note: Algorithms for Optimal Dyadic Decision Trees

A dynamic programming algorithm for constructing optimal dyadic decision trees was recently introduced, analyzed, and shown to be very effective for low dimensional data sets. This paper enhances and extends this algorithm by: introducing an adaptive grid search for the regularization parameter that guarantees optimal solutions for all relevant trees sizes, replacing the dynamic programming alg...

متن کامل

Adaptive Minimax Classification with Dyadic Decision Trees

Decision trees are surprisingly adaptive in four important respects: They automatically (1) adapt to Tsybakov’s “noise” condition; (2) focus on data distributed on lower dimensional manifolds; (3) reject irrelevant features; (4) adapt to Bayes decision boundary smoothness. In this paper we examine a decision tree based on dyadic splits that adapts to each of these conditions to achieve minimax ...

متن کامل

On the Adaptive Properties of Decision Trees

Decision trees are surprisingly adaptive in three important respects: They automatically (1) adapt to favorable conditions near the Bayes decision boundary; (2) focus on data distributed on lower dimensional manifolds; (3) reject irrelevant features. In this paper we examine a decision tree based on dyadic splits that adapts to each of these conditions to achieve minimax optimal rates of conver...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014